11 research outputs found

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Validity of the Prodromal Risk Syndrome for First Psychosis: Findings From the North American Prodrome Longitudinal Study

    Get PDF
    Treatment and prevention studies over the past decade have enrolled patients believed to be at risk for future psychosis. These patients were considered at risk for psychosis by virtue of meeting research criteria derived from retrospective accounts of the psychosis prodrome. This study evaluated the diagnostic validity of the prospective “prodromal risk syndrome” construct. Patients assessed by the Structured Interview for Prodromal Syndromes as meeting criteria of prodromal syndromes (n = 377) from the North American Prodrome Longitudinal Study were compared with normal comparison (NC, n = 196), help-seeking comparison (HSC, n = 198), familial high-risk (FHR, n = 40), and schizotypal personality disorder (SPD, n = 49) groups. Comparisons were made on variables from cross-sectional demographic, symptom, functional, comorbid diagnostic, and family history domains of assessment as well as on follow-up outcome. Prodromal risk syndrome patients as a group were robustly distinguished from NC subjects across all domains and distinguished from HSC subjects and from FHR subjects on most measures in many of these domains. Adolescent and young adult SPD patients, while distinct from prodromal patients on definitional grounds, were similar to prodromals on multiple measures, consistent with SPD in young patients possibly being an independent risk syndrome for psychosis. The strong evidence of diagnostic validity for the prodromal risk syndrome for first psychosis raises the question of its evaluation for inclusion in Diagnostic and Statistical Manual of Mental Disorders (Fifth Edition)

    The Emperor Has No Clothes, But Does Anyone Really Care? How Law Schools are Failing to Develop Students' Professional Identities and Practical Judgment

    No full text

    Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project.

    No full text
    We report the generation and analysis of functional data from multiple, diverse experiments performed on a targeted 1% of the human genome as part of the pilot phase of the ENCODE Project. These data have been further integrated and augmented by a number of evolutionary and computational analyses. Together, our results advance the collective knowledge about human genome function in several major areas. First, our studies provide convincing evidence that the genome is pervasively transcribed, such that the majority of its bases can be found in primary transcripts, including non-protein-coding transcripts, and those that extensively overlap one another. Second, systematic examination of transcriptional regulation has yielded new understanding about transcription start sites, including their relationship to specific regulatory sequences and features of chromatin accessibility and histone modification. Third, a more sophisticated view of chromatin structure has emerged, including its inter-relationship with DNA replication and transcriptional regulation. Finally, integration of these new sources of information, in particular with respect to mammalian evolution based on inter- and intra-species sequence comparisons, has yielded new mechanistic and evolutionary insights concerning the functional landscape of the human genome. Together, these studies are defining a path for pursuit of a more comprehensive characterization of human genome function

    Altering the course of schizophrenia: progress and perspectives

    Get PDF
    International audienc

    Altering the course of schizophrenia: progress and perspectives

    No full text

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016): part one

    No full text
    corecore